29 research outputs found

    Look-Ahead Approaches for Integrated Planning in Public Transportation

    Get PDF
    In this paper we deal with three consecutive planning stages in public transportation: Line planning (including line pool generation), timetabling, and vehicle scheduling. These three steps are traditionally performed one after another in a sequential way often leading to high costs in the (last) vehicle scheduling stage. In this paper we propose three different ways to "look ahead", i.e., to include aspects of vehicle scheduling already earlier in the sequential process: an adapted line pool generation algorithm, a new cost structure for line planning, and a reordering of the sequential planning stages. We analyze these enhancements experimentally and show that they can be used to decrease the costs significantly

    A New Sequential Approach to Periodic Vehicle Scheduling and Timetabling

    Get PDF
    When evaluating the operational costs of a public transport system, the most important factor is the number of vehicles needed for operation. In contrast to the canonical sequential approach of first fixing a timetable and then adding a vehicle schedule, we consider a sequential approach where a vehicle schedule is determined for a given line plan and only afterwards a timetable is fixed. We compare this new sequential approach to a model that integrates both steps. To represent various operational requirements, we consider multiple possibilities to restrict the vehicle circulations to be short, as this can provide operational benefits. The sequential approach can efficiently determine public transport plans with a low number of vehicles. This is evaluated theoretically and empirically demonstrated for two close-to real-world instances

    Algorithms and Hardness for Non-Pool-Based Line Planning

    Get PDF
    Line planning, i.e. choosing paths which are operated by one vehicle end-to-end, is an important aspect of public transport planning. While there exist heuristic procedures for generating lines from scratch, most theoretical observations consider the problem of choosing lines from a predefined line pool. In this paper, we consider the complexity of the line planning problem when all simple paths can be used as lines. Depending on the cost structure, we show that the problem can be NP-hard even for paths and stars, and that no polynomial time approximation of sub-linear performance is possible. Additionally, we identify polynomially solvable cases and present a pseudo-polynomial solution approach for trees

    Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

    Get PDF
    Line planning, i.e. choosing routes which are to be serviced by vehicles in order to satisfy network demands, is an important aspect of public transport planning. While there exist heuristic procedures for generating lines from scratch, most theoretical investigations consider the problem of choosing lines only from a predefined line pool. We consider the line planning problem when all simple paths can be used as lines and present an algorithm which is fixed-parameter tractable, i.e. it is efficient on instances with small parameter. As a parameter we consider the treewidth of the public transport network, along with its maximum degree as well as the maximum allowed frequency

    Using Light Spanning Graphs for Passenger Assignment in Public Transport

    Get PDF
    In a public transport network a passenger’s preferred route from a point x to another point y is usually the shortest path from x to y. However, it is simply impossible to provide all the shortest paths of a network via public transport. Hence, it is a natural question how a lighter sub-network should be designed in order to satisfy both the operator as well as the passengers.We provide a detailed analysis of the interplay of the following three quality measures of lighter public transport networks: - building cost: the sum of the costs of all edges remaining in the lighter network, - routing costs: the sum of all shortest paths costs weighted by the demands, - fairness: compared to the original network, for each two points the shortest path in the new network should cost at most a given multiple of the shortest path in the original network. We study the problem by generalizing the concepts of optimum communication spanning trees (Hu, 1974) and optimum requirement graphs (Wu, Chao, and Tang, 2002) to generalized optimum requirement graphs (GORGs), which are graphs achieving the social optimum amongst all subgraphs satisfying a given upper bound on the building cost. We prove that the corresponding decision problem is NP-complete, even on orb-webs, a variant of grids which serves as an important model of cities with a center. For the case that the given network is a parametric city (cf. Fielbaum et. al., 2017) with a heavy vertex we provide a polynomial-time algorithm solving the GORG-problem. Concerning the fairness-aspect, we prove that light spanners are a strong concept for public transport optimization. We underpin our theoretical considerations with integer programming-based experiments that allow us to compare the fairness-approach with the routing cost-approach as well as passenger assignment approaches from the literature.Peer reviewe

    The line planning routing game

    Get PDF
    In this paper, we propose a novel algorithmic approach to solve line planning problems. To this end, we model the line planning problem as a game where the passengers are players which aim at minimizing individual objective functions composed of travel time, transfer penalties, and a share of the overall cost of the solution. To find equilibria of this routing game, we use a best-response algorithm. We investigate, under which conditions on the line planning model a passenger’s best-response can be calculated efficiently and which properties are needed to guarantee convergence of the best-response algorithm. Furthermore, we determine the price of anarchy which bounds the objective value of an equilibrium with respect to a system- optimal solution of the line planning problem. For problems where best-responses cannot be found efficiently, we propose heuristic methods. We demonstrate our findings on some small computational examples

    Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data

    Get PDF
    We investigate preprocessing for single-source shortest path queries in digraphs, where arc costs are only known to lie in an interval. More precisely, we want to decide for each arc whether it is part of some shortest path tree for some realization of costs. We show that this problem is solvable in polynomial time by giving a combinatorial algorithm, using optimal structures that we call forks. Our algorithm turns out to be very efficient in practice, and is sometimes even superior in quality to a heuristic developed for the one-to-one shortest path problem in the context of passenger routing in public transport

    The Edge Investment Problem: Upgrading Transit Line Segments with Multiple Investing Parties

    Get PDF
    Bus Rapid Transit (BRT) systems can provide a fast and reliable service to passengers at lower costs compared to tram, metro and train systems. Therefore, they can be of great value to attract more passengers to use public transport, which is vital in reaching the Paris Agreement Targets. However, the main advantage of BRT systems, namely their flexible implementation, also leads to the risk that the system is only implemented partially to save costs. This paper focuses therefore on the Edge Investment Problem: Which edges (segments) of a bus line should be upgraded to full-level BRT? Motivated by the construction of a new BRT line around Copenhagen, we consider a setting in which multiple parties are responsible for different segments of the line. Each party has a limited budget and can adjust its investments according to the benefits provided to its passengers. We suggest two ways to determine the number of newly attracted passengers, prove that the corresponding problems are NP-hard and identify special cases that can be solved in polynomial time. In addition, problem relaxations are presented that yield dual bounds. Moreover, we perform an extensive numerical comparison in which we evaluate the extent to which these two ways of modeling demand impact the computational performance and the choice of edges to be upgraded

    The Bus Rapid Transit Investment Problem

    Full text link
    Bus Rapid Transit (BRT) systems can provide a fast and reliable service to passengers at low investment costs compared to tram, metro and train systems. Therefore, they can be of great value to attract more passengers to use public transport. This paper thus focuses on the BRT investment problem: Which segments of a single bus line should be upgraded such that the number of newly attracted passengers is maximized? Motivated by the construction of a new BRT line around Copenhagen, we consider a setting in which multiple parties are responsible for different segments of the line. As each party has a limited willingness to invest, we solve a bi-objective problem to quantify the trade-off between the number of attracted passengers and the investment budget. We model different problem variants: First, we consider two potential passenger responses to upgrades on the line. Second, to prevent scattered upgrades along the line, we consider different restrictions on the number of upgraded connected components on the line. We propose an epsilon-constraint-based algorithm to enumerate the complete set of non-dominated points and investigate the complexity of this problem. Moreover, we perform extensive numerical experiments on artificial instances and a case study based on the BRT line around Copenhagen. Our results show that we can generate the full Pareto front for real-life instances and that the resulting trade-off between investment budget and attracted passengers depends both on the origin-destination demand and on the passenger response to upgrades. Moreover, we illustrate how the generated Pareto plots can assist decision makers in selecting from a set of geographical route alternatives in our case study.Comment: 40 pages; updated links to supplemental materia

    Integrated optimization in public transport planning

    No full text
    This book is one of the first to include an extensive discussion of integrated public transport planning. In times of growing urban populations and increasing environmental awareness, the importance of optimizing public transport systems is ever-developing. Three different aspects are presented: line planning, timetabling, and vehicle scheduling. Classically, challenges concerning these three aspects of planning are solved sequentially. Due to their high interdependence, the author presents a clear and detailed analysis of innovative, integrated models with accompanied numerical experiments performed to assess, and often support, the benefits of integration. The book will appeal to a wide readership ranging from graduate students to researchers
    corecore